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1. BACKGROUND OF THE DOCUMENT 

1.1. EXECUTIVE SUMMARY 

The Copernicus program is the EU response to the increasing demand for reliable 

environmental data. The objective of the Copernicus Land Service is to continuously monitor 

and forecast the status of land territories and to supply reliable geo-information to decision 

makers, businesses and citizens to define environmental policies and take right actions. 

ImagineS intends to continue the innovation and development activities to support the 

operations of the Copernicus Global Land service, preparing the use of the new Earth 

Observation data, including Sentinels missions data, in an operational context. Moreover, 

ImagineS aims to favor the emergence of downstream activities dedicated to the monitoring 

of crop and fodder production, that are key for the implementation of the EU Common 

Agricultural Policy, of the food security policy, and could contribute to the Global Agricultural 

Geo-Monitoring Initiative (GEOGLAM) coordinated by the intergovernmental Group on Earth 

Observations (GEO). 

The main objectives of IMAGINES are to (i) improve the retrieval of basic biophysical 

variables, mainly LAI, FAPAR and the surface albedo, identified as Terrestrial Essential 

Climate Variables, by merging the information coming from different sensors (PROBA-V and 

Landsat-8) in view to prepare the use of Sentinel missions data; (ii) develop qualified 

software able to process multi-sensor data at the global scale on a fully automatic basis; (iii) 

complement and contribute to the existing or future agricultural services by providing new 

data streams relying upon an original method to assess the above-ground biomass, based 

on the assimilation of satellite products in a Land Data Assimilation System (LDAS) in order 

to monitor the crop/fodder biomass  production together with the carbon and water fluxes; (iv) 

demonstrate the added value of this contribution for a community of users acting at global, 

European, national, and regional scales.  

Two LDAS platforms are considered in ImagineS. The first one has a global coverage and 

is based on the ECMWF CTESSEL Land Surface Model (LSM) (Balsamo et al. 2009, 

Balsamo et al. 2011, Boussetta et al. 2013a, Boussetta et al. 2013b). Its carbon module 

component is developed with the active research support of ImagineS partners and in 

particular Meteo-France from which the A-gs model code originated. The CTESSEL model is 

implemented in the Integrated Forecast System (IFS) and is operational at ECMWF. This 

implies that the entire suites of forecasting products can output Net Ecosystem Exchange of 

CO2 (NEE), Gross Primary Production (GPP) and Ecosystem Respiration (Reco). For the 

purpose of the ImagineS project, CTESSEL was upgraded in research mode to consider 

interactive vegetation and biomass output.  
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The second one is a LDAS developed in the SURFEX modeling platform, which includes 

the ability of performing regional experiments. It permits the joint assimilation of remotely 

sensed Surface Soil Moisture (SSM) derived from ASCAT backscatter data and the GEOV1 

satellite-based LAI into the ISBA-A-gs land surface model. The ASCAT data are bias 

corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative 

Distribution Function) matching technique. A multivariate multi-scale LDAS based on the 

Extended Kalman Filter (EKF) technique is used for monitoring soil moisture, vegetation, and 

terrestrial surface carbon and energy fluxes across France and Hungary at a spatial 

resolution of 8 km. Each model grid box is divided in a number of land covers, each having 

its own set of prognostic variables. The filter algorithm is designed to provide a distinct 

analysis for each land cover while using one observation per grid box. The updated values 

are aggregated by computing a weighted average. 

 

1.2. SCOPE AND OBJECTIVES 

The possibility of improving the performance of land surface models (LSMs) using 

remotely sensed observations is a field of active research. The mechanism of integrating 

observations, in a statistically optimal way, into a numerical model is called “data 

assimilation”. The latter permits improving the representation of the dynamical behavior of a 

bio-geophysical system. Land data assimilation systems (LDAS) are needed to integrate 

satellite data providing information about land state variables such as the surface soil 

moisture (SSM) and leaf area index (LAI) into LSMs. 

Soil moisture is a key factor controlling both the water and energy cycles (through its 

impact on the fluxes partitioning at the surface). In addition, it is linked to the carbon cycle 

through the coupling between plant transpiration and photosynthesis. A number of studies 

have discussed the importance of soil moisture in the description of the carbon cycle whose 

connexions with the hydrological cycle are largely unknown (van der Molen et al., 2011). 

Assimilating remotely sensed SSM data into a LSM has proved, in a large number of papers, 

to be effective in estimating deeper soil moisture in various contexts, such as hydrology 

(Houser et al., 1998; Reichle et al., 2002a; Draper et al., 2011), numerical weather prediction 

(NWP) (Mahfouf et al., 2010; Dharssi et al., 2011; De Rosnay et al., 2013) and agricultural 

studies (Bolten and Crow, 2012).  

Also, LAI impacts the exchanges of water vapor and CO2 between the vegetation canopy 

and the atmosphere. A number of studies (Jarlan et al., 2008), Gu et al., 2006, Demarty et 

al., 2007) have shown the potential of assimilating LAI observations to correct vegetation 

model states. 
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Recognizing the importance of better exploiting the close link between soil moisture and 

vegetation variables, efforts were made to implement data assimilation schemes into 

complex models such as coupled hydrological and crop models or physiologically-based 

LSM. The possibility of combining these two data streams within such models has been 

explored in several data assimilation applications either by setting observing system 

simulation experiments (Pauwels et al., 2007; Nearing et al., 2012) or by monitoring real 

environments (Sabater et al., 2008; Barbu et al.,2011). 

Barbu et al. (2014) have shown that the LDAS is able to: (1) simultaneously ingest EO 

satellite data providing mixed signals at a grid-scale into the mosaic structure of the ISBA-A-

gs LSM; (2) propagate information from the surface into the root-zone soil layer; (3) 

consistently impact the water and carbon fluxes; (4) improve the short-term vegetation 

response to drought conditions. 

This document provides a description of how the global and regional LDAS are 

implemented and operated and how the products are obtained. 

 

1.3. CONTENT OF THE DOCUMENT 

Chapter 2 presents the ECMWF global LDAS including a description of the underlying 

LSM and Chapter 3 describes the SURFEX LDAS, its theoretical framework, its configuration 

and a description of its underlying LSM. 

 

1.4. RELATED DOCUMENTS 

1.4.1. Inputs 

Overview of deliverables acting as inputs to this document. 

Document ID Descriptor 

ImagineS_RP1.1 Users Requirements Document 

ImagineS_RP1.2 Service Specifications Document 

 

1.4.2. Output 

Overview of other deliverables for which this document is an input: 
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Document ID Descriptor 

ImagineS_RP6.3 Product User Manual of LDAS output products 
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2. ECMWF GLOBAL LDAS 

Within the Copernicus Global Land service, coordinated efforts are made to produce 

biophysical variables that describe the continental vegetation state, radiation budget and 

water cycle with the objective of developing and validating operationally oriented land 

information services. In particular, satellite-derived products of soil moisture (Soil Water 

Index), Leaf Area Index (LAI) and albedo are being produced. Including this new information 

in a Global Land Data Assimilation System (LDAS) and assessing its impact contributes to a 

better characterization of the vegetation state, permits the monitoring of the surface fluxes 

(carbon and water) and the associated root-zone soil moisture at the global scale (spatial 

resolution of 16km x 16km).  

The global LDAS is developed within the ECMWF system up to pre-operational phase. 

The CTESSEL model is operationally implemented in the Integrated Forecast System 

(IFS).This implies that the entire suites of forecasting products can output Net Ecosystem 

Exchange of CO2 (NEE), Gross Primary Production (GPP) and Ecosystem Respiration 

(Reco).  

Apart from this online real-time production chain, an offline LDAS chain is able to assimilate 

satellite-derived LAI and albedo products and can be attached to the ECMWF reanalysis 

depending on favourable assessment. 

 

2.1. THEORETICAL FRAMEWORK 

2.1.1. Overview 

The product algorithm is based on a full land-atmosphere model described in peer-

reviewed articles and in a technical documentation. The land surface model CTESSEL is 

implemented operationally at ECMWF. This scheme is integral part of the IFS 

(http://old.ecmwf.int/research/ifsdocs/CY40r1/index.html). The LDAS for the global 

component at ECMWF is based on Drusch et al. (2009), de Rosnay et al. (2011), for the land 

surface soil moisture, on a recently revised version of Drusch et al. (2004) and De Rosnay et 

al. (2014) for the snow depth, and on Mahfouf (1999) for the soil temperature. The LAI and 

albedo assimilation are based on Gu et al. (2006) and Boussetta et al. (2014). The system is 

composed of modelling and data assimilation components, described in the following 

sections. 

http://old.ecmwf.int/research/ifsdocs/CY40r1/index.html
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2.1.2. The land surface model (CTESSEL) 

The CTESSEL model results from the coupling between the HTESSEL model (Balsamo et 

al. 2009) and the A-gs photosynthesis model. This model is a modified version of the 

Jacobs’s model (Jacobs et al., 1996) taking into account the effects of soil water stress on 

the photosynthesis and canopy resistance estimation (Calvet et al. 1998, Calvet, 2000, 

Calvet et al. 2004). 

The A-gs model is a semi-empirical physiological model linking the leaf photosynthesis 

rate, the net assimilation of CO2 and the leaf conductance to external surface and 

atmospheric factors (soil moisture, incoming radiation ...). 

The photosynthesis module within the A-gs model is coupled with an ecosystem 

respiration module based on soil moisture and temperature dependency, which is modified to 

take into account the cold region and snow pack effect on soil respiration emission.  

The stomatal behaviour is the main unit driver of the fluxes exchanges between the plant 

and its surrounding environment. It is therefore directly affected by the plants condition and 

the environmental factors. The stomatal conductance is related to photosynthesis, through 

the net CO2 assimilation (An) by the canopy. An is inhibited by different environmental factors 

interacting in a synergistic way. The CO2 assimilation responds to leaf temperature, to the 

soil moisture stress, to solar radiation, and is limited by the air CO2 concentration and water 

vapour availability. 

In order to be used globally within Numerical Weather Prediction (NWP) and climate 

models, the soil respiration part of the model is parameterized in a numerically simple way, 

avoiding long spin-up runs that are necessary when carbon pool parameterisations are used. 

In CTESSEL, the CO2 ecosystem respiration is split into two terms. The first is the dark 

respiration parameterised as a fraction of the gross assimilation. The second represents both 

heterotrophic respiration from the soil and autotrophic respiration from the above and below 

ground structural biomass. It is parameterized as a function of soil temperature, soil 

moisture, snow depth and vegetation. 

2.1.2.1. The Canopy conductance formulation 

Two main approaches are commonly used to formulate the canopy conductance: 

2.1.2.1.1. The Jarvis-Type approach 

Given its simple formulation, the Jarvis-type approach is the most used one in land 

surface models which are adopted by NWP systems. It is based on empirical stress functions 

related to the environment conditions and combined in multiplicative way meant to limit the 
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vegetation-dependant maximum value of the stomatal conductance. The main hypothesis 

behind this formulation is that these stress functions are assumed to be independent from 

each other. 

Within the HTESSEL, the following formulation of the canopy conductance sg is adopted: 

)]()()([ 321max, asss DffRfLAIgg        (2.1) 

with max,sg  being the vegetation type-dependant maximum stomatal conductance and 

321 ,, fff , three inhibition functions expressing respectively shortwave radiation deficit, soil 

moisture stress and atmospheric humidity deficit: 
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where pwp and cap are the soil moisture at permanent wilting point and at field capacity 

respectively and  is a root distribution-based weighted average over the different soil layer 

of the unfrozen soil water. 

aDDg

a eDf


)(3         (2.4) 

where aD is the atmospheric humidity deficit, and Dg is a vegetation type dependant 

coefficient. 

2.1.2.1.2. The photosynthesis based approach (A-gs) 

In this approach, the canopy conductance is calculated from photosynthesis, which is the  

net CO2 assimilation nA  by the canopy. Similarly to the evaporation and using the Kirchhoff 
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analogy, the carbon dioxide flux which results from the difference between the gross 

assimilation gA  and the dark respiration dR  is given by:  

 dgisscn RACCgA  )(        (2.5) 

 where scg is the canopy conductance to carbon dioxide, sC is the CO2 concentration at 

the leaf surface and iC is the intercellular CO2 concentration. 

nA  is calculated as a function of different environmental factors having different responses 

and mutually interacting. 

2.1.2.1.2.1. Soil moisture stress response 

Unlike other A-gs formulation for which the soil moisture stress response is directly 

applied to the gross assimilation mA (Ronda et al., 2001) or the net assimilation nA (Sala and 

Tenhunen, 1996), Calvet (2000) found that the soil moisture stress response is driven in a 

more complex way through the coupled space of the mesophyll conductance mg  and the 

maximum specific humidity deficit tolerated by the vegetation maxD , and behave differently 

between high and low vegetation. In CTESSEL the adopted soil moisture stress response is 

the drought tolerant strategy described in Calvet et al. (2000, 2004) and based on a meta-

analysis of several herbaceous and woody vegetation types. The above-mentioned meta-

analysis also showed that under unstressed condition, mg  and maxD are well correlated for 

low vegetation: 

)ln()ln( *

max

* Dbagm         (2.6) 

while for high vegetation mg  is  well correlated with a vegetation dependant coupling 

factor 0f : 

*

0

* )ln( dfcgm 
        (2.7) 

where, 
*X denote the value of X  under unstressed condition, and a, b , c and d are 

derived constants from the meta-analysis. 
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Considering the soil moisture stress function )(2 f (similarly formulated as in the Jarvis-

type approach), a critical value cf2 is defined to differentiate between moderate ( cff 22  ) 

and severe ( cff 22  ) stress situations. 

a) For  low vegetation:  

Under moderate conditions ( cff 22  ): 

c

cXX

f

ff
DDDD

2

22
max

*

maxmaxmax
1

)(



      (2.8) 

Under severe stress conditions ( cff 22  ): 

c

X

f

f
DD

2

2
maxmax           (2.9) 

where 
XDmax  is the maximum value of maxD  corresponding to cf2  

b) For high vegetation: 

Under moderate conditions ( cff 22  ): 

c

cN

mm

N

mm
f

ff
gggg

2

22*

1
)(




       (2.10) 

where 
N

mg  is the stressed value of gm corresponding to the constant unstressed coupling 

factor
*

0f . 

Under severe stress conditions ( cff 22  ): 

c

N

mm
f

f
gg

2

2          (2.11) 

Further details on the soil stress parameterization can be found in Calvet et al. (2000, 

2004) and Voogt et al. (2007). 
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2.1.2.1.2.2. CO2 concentration and water vapour deficit response 

Further, the photosynthesis assimilation in light-saturating conditions is also limited by the 

air CO2 concentration and determined via a saturation equation: 

,max(-  (  - ) / )

,max   (1 -  )m i mg C A

m mA A e


       (2.12) 

where max,mA  is the maximum net CO2 assimilation and  is the CO2 concentration at 

which assimilation compensates respiration, called CO2 compensation point. The internal 

CO2 concentration iC , is directly derived from a closure equation linking the internal and 

external concentration sC to the water vapour deficit through: 

maxmax

0 1
D

D

gg

g

D

D
f

C

C
f s

mc

cs

s

i




























     (2.13) 

where the coupling factor f is sensitive to air humidity and depends on the cuticular 

conductance cg , the mesophyll conductance mg , the maximum deficit tolerated by the 

vegetation maxD  and 0f  (the value of f when the specific humidity deficit at the leaf surface 

0sD ) 

 iC  is therefore controlled by the air humidity via sD , if the deficit exceeds the maximum 

tolerated by the vegetation ( maxD ), the plant closes its stomata.  

2.1.2.1.2.3.  Temperature responses 

The temperature dependency of the CO2 flux is expressed though Q10-type functions 

applied to the CO2 compensation point  , the mesophyll conductance mg  and the maximum 

assimilation max,mA . Q10 is defined as the proportional increase of a parameter value for a 10 

degree increase in temperature (Berry and Raison, 1982). For the compensation point, it is 

formulated as: 

10/)25(

10)25()(


 sTo

s QT        (2.14) 

For the mesophyll conductance and the maximum assimilation, it is adjusted by the 

inhibition functions after Collatz et al. (1992) as follows: 
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
     (2.16) 

where 10Q , 1T  and 2T  are different for each parameter and modulate its sensitivity to the 

plant surface temperature sT . 

2.1.2.1.2.4.  Radiation response 

The CO2 assimilation limited by CO2 concentration and temperature is further limited by 

radiation through: 

d

RA

I

dmn ReRAA dm

a





















)(
1)(



      (2.17) 

where aI  is the photosynthetic active radiation (PAR), dR  is the dark respiration which is 

simply parameterised as a fraction of mA . And   is the initial quantum use efficiency 

parameterised as: 






2
0

i

i

C

C
         (2.18) 

 where 0  is the maximum quantum use efficiency 

The stomatal conductance to CO2, scg , is estimated using the flux-gradient relationship, 

modified to account for the effect of specific humidity deficit on stomatal aperture given by: 

is
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




1
max
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   (2.19) 

where minA  represents the residual photosynthesis rate (at full light intensity) associated 

with cuticular transfers when the stomata are closed because of a high specific humidity 

deficit. 
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)( minmin  CgA m         (2.20)  

where minC is the maximum value of iC  at maximum specific humidity deficit: 

mc

msc
i

gg

gCg
C




         (2.21) 

The diffusion of CO2 interacts with that of water vapour and the stomatal conductance to 

CO2 is corrected for this interaction and iteratively refined by: 

)(2 is

is

va

a
scsc

CC

CC

M

M
Egg







      (2.22) 

where vM and aM are molecular masses of water vapour and air respectively, a  is the 

air density and E is the leaf transpiration based on the previous guess of the stomatal 

conductance:  

assc DgE )6.1(         (2.23) 

 Finally, the stomatal conductance to water vapour sg  is given by: 

cscs ggg  6.1         (2.24)  

where cg  is the cuticular conductance (a vegetation dependent parameter). 

2.1.2.1.2.5.  Vertical integration from leaf to canopy 

The net CO2 assimilation calculated at the leaf scale is upscaled at the canopy scale 

assuming that leaf parameters do not vary within the canopy, and the attenuation of the 

incoming shortwave radiation in the canopy is computed thanks to a simple radiative transfer 

model. 

The incoming shortwave radiation is attenuated within the canopy. At the top of the 

canopy, the incoming PAR is assumed to be 48% of the incoming shortwave radiation. The 

PAR extinction is described by Roujean (1996). The PAR at height z  in the canopy is given 

by: 

))(1)(()( zKhIzI aa         (2.25) 
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where h  is the height of the top of the canopy and K is the extinction function given by: 

))()(1()()()( zKfzKfzK drsdfs        (2.26) 

where )(zKdf  and )(zKdr  are the extinction coefficients of diffuse and direct light, 

respectively: 








 

 h

zhbLAI

df ezK

)(8.0

1)(        (2.27) 


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
h

zhbLAIG

dr
sezK

)(

)cos(
1)(


       (2.28) 

where s  is the solar zenith angle and G is a parameter that describes the distribution of 

leaves (a spherical angular distribution is assumed: G=0.5). f  is the ratio of diffuse to total 

downward shortwave radiation at the top of the canopy given by: 

)cos(25.0

25.0
)(

s

sf





        (2.29) 

b is the foliage scattering coefficient given by 










11

11
1b         (2.30) 

based on the leaf single scattering albedo (=0.2) for the solar spectrum corresponding to 

the PAR. 

 Assuming an homogeneous leaf vertical distribution, the integrated canopy net CO2 

assimilation and conductance can be written as: 



1

0

)/( hzdALAIA nnI         (2.31) 



h

ssI hzdgLAIg
0

)/(         (2.32) 

The integrations are parameterized with a three-point Gauss quadrature method following 

Jacobs (1996). 
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2.1.2.2. The vegetation growth model 

Owing to the photosynthetic activity and based on biomass evolution, CTESSEL is also 

able to generate its own interactive LAI. This version of the model is the starting point for a 

near real time assimilation of LAI satellite data. The biomass module simulates growth and 

mortality of the vegetation. The growth of active biomass B  is based on the accumulated net 

CO2 assimilation over the previous day daynA ,  and the LAI is obtained from the biomass 

following: 

         (2.33) 

In reality, αB depends on climate (temperature and CO2 concentration) and nitrogen 

fertilisation. In order to account for plant morphology, the nitrogen dilution concept is applied 

for the biomass evolution. The plant N decline model is a well-established agronomical law 

relating the plant N in non-limiting N-supply conditions to the accumulated above-ground dry 

matter. The critical plant N is the value of N maximizing growth, and this value decreases for 

increasing biomass accumulation following a negative power law. The basis of the model is 

that the metabolic component B  of the plant biomass is related to total biomass TB  through 

an allometric logarithmic law (Calvet and Soussana, 2001). In CTESSEL, the metabolic 

biomass component is identified as the active biomass and the relationship between active 

biomass B and total aboveground biomass BT is: 

a

T
c

B
B













1

1

         (2.34) 

where a  and c  are constant parameters. The total aboveground biomass consists of the 

active biomass reservoir and the structural aboveground reservoir sB , which can be 

considered as the "living" structural biomass, like the stem. For forests, wood is a dead 

reservoir and does not contribute to sB . Within the nitrogen dilution model a relationship 

between the leaf area ratio (LAR) and the aboveground nitrogen concentration NT is applied:  

PeN
B

LAI
LAR T

T

         (2.35) 

where e  and P  are called plasticity parameters and are derived per vegetation type. This 

formulation can be used as a closure equation to estimate αB:  

B

B

LAI
 
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a

T
a

B

cB
PeN 


1

         (2.36) 

where Na is the nitrogen concentration in the active biomass. It depends on vegetation 

type and on the nitrogen fertilisation. For further details and derivations see Calvet and 

Soussana (2001). In this way, b  has become a model variable depending on TB . However, 

for global simulations, it is desirable to keep b  as a constant parameter in order to let αB 

represent rather intrinsic plant characteristics denoting a biological adaptation to average 

climate and growing conditions (Calvet and Soussana, 2001). For that purpose, the above 

Eq.36 can only be solved by iteration. Moreover, LAR and NT data to derive the plasticity 

parameters by regression is lacking. However, data is available for leaves in the form of the 

specific leaf area (SLA) and the nitrogen content in leaves NL: 

PeN
B

LAI
SLA L

L

        (2.37) 

Both the iteration issue and the availability of data to derive e  and P  give rise to modify 

the nitrogen dilution module. Eq.37 is simplified by considering αB as the ratio of the biomass 

of green leaves to LAI:  

PeNSLA L

B



11

         (2.38) 

2.1.2.3. Soil respiration and ecosystem exchanges parameterization 

In order to be used within a NWP model, soil respiration needs to be parameterized in a 

numerically simple way, avoiding long spin-up run that are necessary when carbon pool 

parameterisation is used. In CTESSEL the CO2 ecosystem respiration ecoR  is split into two 

terms. The first is the dark respiration dR  (parameterized from mA ). The second, represents 

both heterotrophic respiration from the soil and autotrophic respiration from the above and 

below ground structural biomass and referred hereafter as soilstrR , it is parameterized as a 

function of soil temperature, soil moisture, snow depth and vegetation type as: 

snsm

T

decosoilstr ffQRRRR
soil








 

 10

25

100      (2.39) 

where snf and smf are snow and soil moisture attenuation function respectively defined as: 
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)1(1 snowz

vssn eCf


        (2.40) 

vsC is the surface fraction covered by snow,  is a constant expressing the attenuation of 

the soil carbon emission within the snow pack and snowz  is the snow depth. 

The soil moisture stress function for soil respiration is defined following a study by 

Albergel et al. (2010) as:   

 
cap

smf



          (2.41) 

 In this case, given its variability with climate regimes, 10Q is defined as a function of soil 

temperature after McGuire et al. (1992)  

The vegetation types are affecting the ecosystem respiration through a reference 

respiration at 25°C ( 0R ). 0R is estimated by minimizing the root mean square errors between 

simulated and observed ecoR  for each vegetation (section 2.4).  

Finally, the following equations describe the relation between the gross primary production

GPP , the net ecosystem exchange NEE  and the respiration components ( dR , soilstrR , ecoR ): 

dn RAGPP          (2.42) 

ecosoilstrn RGPPRANEE         (2.43) 

 

2.2. GLOBAL LDAS ARCHITECTURE 

2.2.1. Inputs/Outputs 

The input of the LDAS is represented by the screen-level parameters (2m temperature 

and relative humidity) as well as the ASCAT satellite-based soil moisture assimilated in a 

research version of the LDAS. The use of screen-level parameters is described in Mahfouf 

(1999) and de Rosnay et al. (2012). The model background for land surface analysis is 

provided by the CTESSEL land surface scheme, which currently accounts for 15 variables 

(Table 1). 
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Table 1: List of land surface variables in CTESSEL (in bold italics those currently included 

in the land surface analysis). * developed within ImagineS 

Code Name Abbreviation Unit 

32 Snow albedo ASN (0 - 1) 

33 Snow density RSN kg m
-3

 

39 Volumetric soil water layer 1 SWVL1 m
3
 m

-3
 

40 Volumetric soil water layer 2 SWVL2 m
3
 m

-3
 

41 Volumetric soil water layer 3 SWVL3 m
3
 m

-3
 

42 Volumetric soil water layer 4 SWVL4 m
3
 m

-3
 

139 Soil temperature level 1 STL1 K 

141 Snow depth SD m 

170 Soil temperature level 2 STL2 K 

183 Soil temperature level 3 STL3 K 

236 Soil temperature level 4 STL4 K 

238 Temperature of snow layer TSN K 

66 Leaf Area Index, low vegetation* LAI_LV m
2
 m

-2
 

67 Leaf Area Index, high vegetation* LAI_HV m
2
 m

-2
 

174 Albedo* AL (0 - 1) 

 

At the moment, four different analysis schemes are active for the surface (and near-

surface) variables based, respectively, on spatial Optimum Interpolation (2D-OI, used snow 

depth and screen-level analyses), the column Optimum Interpolation (1D-OI, used for 

soil/snow temperature analysis), a Simplified EKF (SEKF, used for soil moisture analysis) 

and the assimilation of the Leaf Area Index (LAI) and albedo is based on a simple 1D optimal 

interpolation method (Gu et al., 2006 and Boussetta et al., 2014) which is well adapted to the 

current global system. All schemes operate independently from the atmospheric analysis. 

2.2.1.1. 2m temperature and relative humidity 

The screen-level variables are analysed using a spatial 2D-OI algorithm and are used as 

input to the soil moisture and soil/snow temperature analyses. 
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The screen-level analyses are performed 4 times per day at synoptic hours (0, 6, 12, 18 

UTC). The background field (issued from a 6-hour or 12-hour forecast) is horizontally 

interpolated to the observation locations using a bilinear interpolation scheme and 

background increments are calculated. Horizontal structure functions are calculated following 

a Gaussian formulation and using an e-folding distance of 300 km. The standard deviations 

of background and observation errors are set to 1.5 K and 2 K for temperature and 5% and 

10% for relative humidity, respectively. Those 50 observations closest to a given grid point 

within a radius of 1000 km are considered for the analysis at that grid point. The analysis is 

performed over land and ocean but only land (ocean) observations are used for model land 

(ocean) grid points. 

2.2.1.2. Soil and snow temperature 

The soil and snow temperature are analysed using a 1D-OI that correlates 2m 

temperature short-term errors (forecast-analysis) with soil/snow temperature corrections. The 

corrections are mutually exclusive, i.e. in the presence of snow the soil temperature is not 

modified. 

2.2.1.3. Soil moisture 

In the current soil moisture analysis scheme, a SEKF is operated (de Rosnay et al. 2011, 

Drusch et al., 2009) with the following characteristics: 

 the SEKF is run at T1279 resolution over a 12-hour window as is the atmospheric 4D-

Var analysis; 

 the background errors are kept static and are not evolved, as in the Kalman Filter; 

 soil moisture in the top three layers (0-7, 7-28, 28-100 cm) are perturbed individually; 

atmospheric parameter perturbations are performed globally at the same time (i.e. 

assuming no correlation) and three atmospheric model integrations are performed; 

Jacobians are calculated from finite differences; 

 the resulting surface analysis is used to initialize the next short forecast which then 

provides surface conditions to the atmospheric analysis window 12 hours later. 

2.2.1.4. Snow depth 

The snow depth analysis uses a spatial 2D-OI as well since November 2010. This 

analysis ingests SYNOP snow-depth reports and IMS satellite-based snow cover data (at 4 

km resolution). The structure functions differ from the screen-level analysis and are 

parameterized following Brasnett (1999). Despite providing a significant improvement of the 

previous analysis scheme the use of satellite data is still not ideal (since adopted as “ground-
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truth” to modify the model background). Ongoing work investigates the use of a SEKF in 

order to assimilate satellite-based products. 

2.2.1.5. Analysis of albedo and LAI 

A one dimensional data assimilation method is used to produce analysis of albedo and 

LAI from the GEOVx data. Following the method of Gu et al. (2006) and Boussetta et al., 

(2014), the observation and the climatological values are combined with their respective error 

estimates to produce the analysis product.  

2.2.1.5.1. Derivation of climatological series 

Before processing the climatological product, unreliable retrievals have been discarded 

from the analysis thanks to the quality flag (QA). In particular: dead detectors, significant 

clouds and/or snow contaminated pixels, and failure of the radiative transfer model due to 

problems other than geometry have been filtered out during this pre-processing. Afterwards, 

the 1-km products were aggregated to 10 km resolution through a nine-by-nine-point spatial 

smoothing. The 10 km value is computed when more than 30% of the 1-km products at the 

grid point scale have not been flagged and a further snow-free screening is performed on the 

data. Then a first version of the climatological time series is obtained by averaging data from 

1999 to 2012 (ALBcv1/LAIcv1).  

These first versions climatological time-series still contain gaps especially in snow-

covered high latitude regions. To overcome this deficiency, a second version of the 

climatological time series (ALBcv2/LAIcv2) is generated by spatially filling the data gaps with 

values from 36 10-daily “self-derived” look-up tables of LAI and albedos for each vegetation 

type. The look-up tables are derived through stratification of ALBcv1/LAIcv1 by vegetation 

type based on a 90% vegetation cover threshold for each type. In CHTESSEL, the land use 

classification follows from the Global Land Cover Characteristics (GLCC) data (Loveland et 

al., 2000) and use is made of the Biosphere-Atmosphere Transfer Scheme (BATS) 

classification to assign the vegetation types. 

 Finally, a three-point temporal smoothing is applied to this second version climatological 

data to obtain a final version of the climatological time series (ALBc/LAIc). These data are 

then re-projected and interpolated to a target model simulation grid, together with their 

associated error c in order to be used in the ECMWF model.  

2.2.1.5.2. Assimilation method 

The main objective of data assimilation is to optimize the use of observational data in 

order to get the best estimate from all available information. It usually attempts to combine 

data from different sources in an optimal way to provide the best estimate also called 
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analysis product. In this system, a one dimensional data assimilation method is used to 

produce analysis of albedo and LAI from the GEOVx data. Two pieces of information are 

used to generate the analysis product at a given time t: the observation oV  with its associated 

error o  and the climatological values cV  with their associated errors c , (V being the LAI or 

the albedo data). The optimal combination of these two pieces of information is obtained by 

minimizing a quadratic cost function J which corresponds to the least-square estimate aV : 
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Assuming the associated errors are Gaussian, the minimisation of J would lead to the 

BLUE (best linear unbiased estimate) ensuring a minimum variance for the analysis error, 

which leads to: 
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        (2.45) 

To avoid rough replacement with the climatological data in the case of missing 

observation and relax non-realistic jumps, a further processing is performed by adding the 

climatological tendency to the last analysis value assuming the analysis tendency is similar 

to the climatological one: 

t

tVtV

t

tVtV ccaa








 )1()()1()(
        (2.46) 

To summarize, a flowchart of the data processing and analysis procedure is illustrated in 

Figure 1. 
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Figure 1: Flowchart of the albedo and LAI pre-processing, climatology derivation and 

assimilation 

 

The LAI and albedo analysis system is implemented in the framework of the ImagineS 

project and is initially tested with the available GEOV1 Copernicus Global Land product. The 

system is implemented in an inter-operable way to be able to ingest forthcoming LAI and 

albedo products. Figure 2 shows an example of the system outputs for the albedo. It 

illustrates the analysis of snow-free broadband diffuse albedo and its difference from the 

observed data for different dates representing the four season of year 2006 (January 25th, 

April 25th, July 25th and October 25th). The PROBA-V demo products are being explored 

and will be tested in the system when fully stable within the processing chain. 
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Figure 2: Differences between the analysis and the observed broadband diffuse albedo for: 

a) 25 January 2006, b) 25 April 2006, c) 25 July2006, d) 25 October 2006, and Analysis broad 

band diffuse albedo for: e) 25 January 2006, f) 25 April 2006, g) 25 July2006, h) 25 October 

2006. 
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2.2.1.5.3. The Copernicus Global Land products (GEOV1) 

The GEOV1 LAI and albedo products are based on observations from the VEGETATION 

sensor on board SPOT satellite. They are produced every 10 days using a composite 

observation from a 30 days moving window at 1/112o spatial resolution (about 1 km at the 

Equator) with a global coverage.  Each GEOV1 product is provided with its associated error 

measure o. To take advantage of previous algorithmic experience and existing LAI products, 

the “best-performing” LAI data (Garrigues et al., 2008) were combined and then used to train 

a neural network system. The combined LAI data are the CYCLOPES-V3.1 (Baret et al., 

2007) and the collection 5 of MODIS LAI (Myneni et al., 2002). This fusion allows benefiting 

from the good performance of MODIS LAI for high values and CYCLOPES-V3.1 LAI at low 

values. After being trained with the fused data, the neural network system is then fed with the 

atmospherically corrected reflectances in red, near-infrared, and shortwave-infrared bands 

from VEGETATION as well as the solar zenith angles and the satellite overpass timing which 

results into the GEOV1 LAI (Baret et al., 2013).  

The GEOV1 surface albedo is also based on observations from the VEGETATION sensor 

and its derivation follows Geiger and Samain (2004). The method includes cloud screening 

(Hagolle et al., 2004), atmospheric correction (Rahman & Dedieu, 1994), directional 

reflectance normalization (Roujean et al., 1992), and albedo determination for the different 

integration angles (direct and diffuse) and different spectral intervals (visible, near-infrared, 

and broadband). 

Under the Copernicus Global Land service, the GEOV1 products were validated by 

characterising their spatial and temporal continuity and consistency as well as their accuracy 

at the global and regional scales against other global products and the BELMANIP2 sites 

network (Benchmark Land Multi-site Analysis and Inter-comparison of Products). The 

conclusion of this validation was that the GEOV1 products are of good quality, show 

consistent temporal and spatial distributions and have reasonable accuracy which can meet 

the requirements for usage within LSMs (Camacho et al., 2013).       

 

2.2.2. Sequence of operations, data streams, interfaces 

The sequence of operation is documented in the IFS data assimilation manual (see Part 

II, Chapter 11) available on the web at 

http://old.ecmwf.int/research/ifsdocs/CY40r1/ASSIMILATION/IFSPart2.pdf and in Boussetta 

et al. (2014). 
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2.2.3. Capacity requirements (computing time, timeliness, storage) 

The computing is performed on the ECMWF supercomputer (CRAY XC30), and the time 

sequence is in line with the operational production, as described on the ECMWF web site 

and on the data assimilation suites summarized in Haseler (2004, 

http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/401-500/tm454.pdf ). 

The Storage is managed by the Meteorological Archiving and Retrieval System (MARS) 

available at ECMWF and that serves the meteorological users and the Member-States. 

 

2.2.4. Summary of the Global LDAS characteristics 

 

Inputs Screen-level parameters, ASCAT-Soil moisture, GEOVx LAI, GEOVx albedo   

Outputs Analyzed LAI, analyzed albedo, Root-zone soil moisture, NEE, GPP, Evapo-

transpiration 

Interfaces IFS (Integrated Forecasting System) 

Capacity 

requirements 

CRAY XC30 Supercomputing facility, 

MARS storage system 

Table 2: Summary of ECMWF global LDAS characteristics 

 

 

 

 

 

http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/401-500/tm454.pdf
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3. SURFEX REGIONAL LDAS 

 

3.1. THEORETICAL FRAMEWORK 

3.1.1. Basic underlying assumptions 

The LDAS is defined as an off-line sequential data assimilation system based on a LSM 

uncoupled with the atmosphere. The LDAS uses the SURFEX modeling platform (Masson et 

al., 2013) developed at Meteo-France in collaboration with the HIRLAM and ALADIN 

meteorological consortia. SURFEX is designed to be coupled to atmospheric and 

hydrological models. In the LDAS configuration, SURFEX is used offline (i.e. not coupled 

with the atmosphere) and is driven by gridded atmospheric forcings. For example, over 

France, The model is driven by observation-based atmospheric forcing data which are 

derived from the SAFRAN (Système d'Analyse Fournissant des Renseignements 

Atmosphériques à la Neige) meso-scale analysis system at 8-km spatial resolution and 

hourly temporal sampling (Quintana et al., 2008). Atmospheric variables include precipitation, 

2-m air temperature, 2-m specific humidity, wind speed, surface pressure, incoming solar 

radiation, and incoming long-wave radiation. 

The LDAS is able to integrate simultaneously available SSM and LAI observations at a 

given time step into the ISBA-A-gs LSM, aiming at adjusting the model trajectory at that time. 

ISBA-A-gs represents the vegetation sub-grid heterogeneity (crops, grasslands, coniferous 

forests, broadleaf forests) by using a mosaic approach (Koster and Suarez, 1992).  

In the absence of a priori knowledge (such as agricultural practices) at the landscape 

scale, the assimilation approach described in Sect.  3.2.4 used the hypothesis that the 

distribution of innovations is proportional to the cover area. Useful information can be 

extracted from the data signal at the grid level and distributed among the patch structure of 

the model. 

An extended Kalman filter (see Sect ) is used in order to incorporate the SSM product 

derived from ASCAT together with the GEOV1 LAI satellite product. An important motivation 

for combining two sources of information within a land surface model is the expectation that 

they will contribute in a more coherent manner to reduce model uncertainties. 

The patch fraction approach, the Jacobian behavior and the uncertainties in the model 

and in the observations described in the next sections, offer the possibility to adapt the 

analysis to each plant functional type. The multi-patch assimilation may be viewed as an 
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opportunity to include valuable sub-grid information coming from other sources for improving 

the analysis among patches. 

 The three main components of the LDAS (land surface model, remote sensing data and 

analysis scheme) are detailed hereafter. 

 

3.1.2. Land Surface Model 

In the SURFEX platform (http://www.cnrm.meteo.fr/surfex/), the ISBA LSM (Noilhan and 

Mahfouf, 1996) describes the exchanges between soil, vegetation and atmosphere. Version 

7.3 of SURFEX is used. The force-restore three-layer version of the soil model in ISBA is 

used (Boone et al., 1999). The soil texture parameters (clay and sand proportions) are taken 

from the soil geographical database (BDGSF) of the French National Institute of Agronomic 

Research available at http://www.gissol.fr/programme/bdgsf/. For each model grid cell, the 

modeled soil moisture is partitioned into three variables: the simulated SSM (representative 

of the first soil centimeter), the volumetric root-zone soil moisture WG2 (defined for rooting 

depths depending on the vegetation type, with a maximum thickness of 2.5 m) and a 

volumetric soil moisture value WG3 in the recharge zone below the plant roots (with a 

maximum thickness of 1 m). Hereafter, the simulated SSM will be referred to as “SSMmod”. 

In the model, the propagation of surface information to root-zone layer relies on the force-

restore dynamics of the model: SSMmod is forced by precipitation and evaporation and 

restored toward WG2. 

The A-gs module of ISBA was developed to allow the simulation of photosynthesis and 

the growth of vegetation with different biomass reservoirs (Calvet et al., 1998). The 

vegetation biomass and LAI variables are governed by photosynthesis and evolve 

dynamically in response to weather and climate conditions. Namely, during the growing 

phase the net assimilation of CO2 photosynthesis leads to plant growth from a minimum 

threshold set to either 1 m2 m−2 for forest or 0.3 m2 m−2 for herbaceous vegetation. The larger 

threshold for forest was set in order to represent the vegetation layer between the forest 

canopy and the ground and the evergreen characteristics. A deficit of photosynthesis sets off 

leaf biomass mortality that exceeds net assimilation. Consequently LAI drops down to its 

minimum value. 

The photosynthetic activity depends on the vegetation types. The input soil and vegetation 

parameters are provided by the ECOCLIMAP-II global database (Faroux et al., 2013) which 

describes ecosystem classes and assigns them in twelve elementary land cover types 

(patches) at 1 km spatial resolution. Three of them represent patches without vegetation 

(bare soil, permanent snow and rocks). Over the France domain, the dominant ecosystems 

are grasslands (31 %), C3 croplands (24 %), deciduous forest (20 %), coniferous forests (11 



ImagineS, FP7-Space-2012-1 

ATBD of Land  Data Assimilation System  

 

IMAGINES_RP3.1_ATBD-LDAS  @ ImagineS consortium 

Issue: I2.10 Date: 19.05.2016 Page:37  

 

 

 

%) and C4 croplands (4 %). Bare soil represents 8 % of the area. The mean root depths are 

of 1.5 m for herbaceous vegetation and 2 m for forests. 

The water and energy budgets are calculated separately for each patch. ISBA-A-gs 

simulates the aggregation of carbon, water, and energy fluxes from the different patches. 

The modeled LAI at 8 km resolution is an average value of vegetation types (up to 9 in the 

current configuration) weighted with their cover fraction. The ISBA A-gs model simulates the 

interaction between water and carbon cycles. The evapo-transpiration flux (ET) represents 

the sum of the evaporation of liquid water from the soil surface and from the vegetation, and 

the sublimation from the snow and soil ice. The net ecosystem CO2 exchange (NEE) is given 

by the difference between the ecosystem respiration (RECO) and Gross Primary Production 

(GPP). The GPP represents the carbon uptake by photosynthesis. The "NIT" version of 

ISBA-A-gs is used in the LDAS. This version interactively calculates the leaf biomass and 

LAI, using a plant growth model (Calvet et al., 1998; Calvet and Soussana, 2001) driven by 

photosynthesis. The vegetation growth and senescence are entirely driven by 

photosynthesis. The leaf biomass is supplied with the carbon assimilated by photosynthesis, 

and decreased by a turnover and a respiration term. Turnover is increased by a deficit in 

photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and a 

minimum LAI value is prescribed. The maximum annual value of LAI is prognostic, i.e. it is 

predicted by the model. The flexibility of the photosynthesis driven vegetation-growth model 

of ISBA-A-gs facilitates the use of data assimilation techniques. In this version, the RECO 

value departs from a basal rate as a function of soil temperature and soil moisture (Albergel 

et al., 2010). Following Lafont et al. (2012) the respiration basal rate was calibrated by 

assuming near equilibrium between the ecosystem respiration and the vegetation carbon 

uptake over the period 2007-2012. It is assumed that the accumulated RECO represents 

72% of the accumulated GPP, following a study performed over French flux tower data 

(http://www-lscedods.cea.fr/invsat/PEYLIN/CARBOFRANCE/rapport_carbofrance_final.pdf).  

Also, the A-gs module features two different types of the plant response to drought, for both 

herbaceous vegetation (Calvet, 2000) and forests (Calvet et al., 2004). In the strategy called 

defensive or drought-avoiding, the plant increases the water use efficiency (WUE) in 

response to soil water stress, while in the offensive strategy or drought-tolerant, the WUE is 

stable or even decreases. While C3 crops and coniferous trees are associated to a drought-

avoiding behavior, C4 crops, grasslands and broadleaf trees are associated to a drought-

tolerant behavior (Calvet et al., 2012, 2004). 

 

3.1.3. Remote sensing data sets 

 Satellite-derived SSM 
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The Advanced Scatterometer (ASCAT) is an active C-band microwave sensor on board 

the European METOP polar-orbiting satellite. The soil moisture information is derived from 

ASCAT radar backscatter coefficients delivered at 25 km resolution using a methodology 

developed at the Vienna University of Technology (TU-Wien). This method is based on a 

change detection approach originally developed for the active microwave instrument flown 

on-board the European satellites ERS-1 and ERS-2 (Wagner et al., 1999; Bartalis et al., 

2007). An exponential filter in its recursive formulation (Albergel et al., 2008) is applied to this 

SSM product to estimate the soil water index (SWI) using a time scale parameter T that may 

vary between 1 day and 100 days. The result for the top soil moisture content (< 5 cm) range 

between 0 (dry) and 1(saturated). Hereafter, this quantity will be referred to as “SSMsat”. In 

this study, SSMsat consists of Copernicus Global Land soil water index values with a 

characteristic time length of one day, denoted by SWI-001 (Kidd et al., 2011). A surface state 

flag which identifies either frozen conditions, presence of snow cover or temporary 

melting/water on the surface is provided. The product includes also a quality flag indicating 

the availability of SSMsat measurements with an acceptable quality. After screening, the 

remaining data were projected onto the 8 km model grid resolution by assigning each 

observation to all SAFRAN grid cells within 0.15◦ and then considering the average of data 

assigned to each model grid. The model time series (SSMmod) were compared with soil 

moisture data (SSMsat) to determine their capability to represent the temporal dynamics at a 

grid scale. 

A good agreement between the SSMsat and the SSMmod was found, despite 

anomalously low values of SSMsat produced in frozen surface conditions. These erroneous 

values are not adequately identified by the flags. This suggests that an additional frozen 

surface mask depending on model forecasts of frozen conditions has to be applied to the 

SSMsat data before being used in a data assimilation application. Similar to Draper et al. 

(2011), the screening procedure was extended to the use of two additional static masks in 

order to discard data in urban regions with an urban fraction greater than 15 % in the 

ECOCLIMAP database, and to remove data with a topographic flag representing 

mountainous regions with an altitude greater than 1500 m. The topographic information is 

provided by the GTOPO30, a global digital elevation model (DEM) with a horizontal grid 

spacing of approximately 1 kilometer. 

 Satellite-derived LAI product 

The GEOV1 LAI product is derived from the SPOT-VGT satellite observations. Hereafter, 

this quantity will be referred to as “LAIsat”. The LAIsat values are produced by a statistical 

algorithm, namely a neural network trained using two pre-existing products: the SPOT-VGT 

CYCLOPES V3.1 product (Baret et al., 2007) and the TERRA/ AQUA MODIS collection 5 

product (Myneni et al., 2002). The product is provided globally at a spatial resolution of 1 km 

and a 10 day sampling time in a Plate Carrée projection. The LAIsat is close to the true LAI 
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since the saturation effect affecting the CYCLOPES product for large LAI values, 

corresponding to dense canopies, was reduced by the MODIS contribution in the training 

process. The retrieval methodology and detailed information about the product are described 

by Baret et al. (2013). Camacho et al. (2013) performed a validation study by comparing the 

GEOV1 product with ground measurements and other reference satellite products. They 

concluded that the GEOV1 is a reliable product and has an important added-value regarding 

its two precursor products. 

A quality check was performed using a number of quality flags provided with the LAIsat. 

The data are kept only if all the quality flags are set to 0. The 1 km data are aggregated at 

the model grid at 8 km resolution if at least 32 grid points are present (more than half the 

maximum amount). 

 Satellite-derived FAPAR product 

FAPAR corresponds to the fraction of photosynthetically active radiation absorbed by the 

canopy. The FAPAR value results directly from the radiative transfer model in the canopy 

which is computed instantaneously. The instantaneous FAPAR value at 10:00 solar time is 

used under clear sky conditions (equivalent to black-sky conditions as defined also for 

albedo). A quality check is performed using a number of quality flags provided with the 

FAPAR product. The data are kept only if all the quality flags are set to 0. The 1 km data are 

aggregated at the model grid spatial resolution if more than half the model grid-cell surface is 

covered. 

 

3.1.4. Land Data Assimilation System 

3.1.4.1. Generic algorithm 

The DA methods employed in this work are derived from the Kalman filter theory.  

In sequential data assimilation the system state estimate, given by a solution of the model 

equations, is updated each time measurements are available. This update is usually referred 

to as “the analysis”. 

The model equations are discretized according to: 

  (Eq. 3.1) 

 Here, the forward operator is the land surface scheme ISBA-A-gs denoted by M. This 

operator computes the time evolution of the control vector xb which contains the root-zone 

soil moisture and the LAI at time ti given their analyzed values (xa) at previous time. 
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The Kalman filter analysis update is: 

  yyKxx oba   (Eq. 3.2) 

where yo is the assimilated observation and y=H(x) is the model predicted value of the 

observation. 

The model state and the observations are weighted using the Kalman gain K: 

                                            (Eq. 3.3) 

where H is the linearized observation operator, B is the background-error covariance and R 

is the observation-error covariance. 

The SEKF (Section 3.1.4.2) and the ensemble DA methods (Section 3.1.4.3) differ in the way 

they approximate the background-error covariance and the way they propagate it to the end 

of the assimilation window.  

3.1.4.2. SEKF 

The Extended Kalman filter (EKF) uses the full nonlinear model to propagate the state 

estimate, but uses a local linearization of the dynamics to propagate the state uncertainty, 

that is the error covariance matrix. A finite difference method is used to linearize the forecast 

model, as well as the observation operator by performing model integrations with perturbed 

initial values of the state vector. The simplified Extended Kalman filter (SEKF) (Mahfouf et 

al., 2009) is based on the EKF. The SEKF simplifies the EKF by using both a diagonal and 

climatological background-error covariance at the start of the assimilation window. The SEKF 

implicitly propagates B to the end of the assimilation window via the Jacobian of the 

observation operator H. The Jacobian Hkl  for observation k and model point l is calculated by 

finite differences: 

l

k
kl

x

y
H




  

    (Eq. 3.4) 
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3.1.4.3. EnKF 

The EnKF (Evensen, 1994) is a way of representing the uncertainty in the prognostic 

variables using an ensemble of model trajectories. This circumvents the high computational 

cost of explicitly storing and propagating the background-error covariance for a large model 

dimension. Each ensemble member is propagated using the nonlinear model. The 

deterministic analysis comes from the ensemble mean: 

  (Eq. 3.5) 

The Kalman gain is given by: 

                          (Eq. 3.6)  

where the ensemble background-error covariance: 

                                   (Eq. 3.7) 

The ensemble perturbation matrix (of dimension n  m) is defined as: 

                        (Eq. 3.8) 

 

where                                  are the perturbations from the ensemble mean. 

An additional step is required to avoid ensemble collapse. The traditional EnKF of Burgers et 

al. (1998) maintains the ensemble spread by perturbing the observations, with perturbations 

randomly sampled from a zero-mean normal distribution with covariance R. The serial 

ensemble square root filter was introduced by Whitaker et al.  (2002) as a means of avoiding 

the sampling error from the perturbed observations. The ensemble perturbations are defined 

by: 

  (Eq. 3.9) 

where 

  (Eq. 3.10) 

 

The added value of EnKF with respect to SEKF is the possibility to account for 

atmospheric forcing errors and a lower computing time when many variables have to be 
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analyzed (e.g. using refined versions of the soil hydrology sub-model, including many soil 

layers). A full description and test of the EnKF can be found in Fairbairn et al. (2015). 

 

3.1.4.4. Multi-patch representation 

The model permits a multi-patch representation of land (e.g. grasslands, broadleaf forests, 

etc.). A model grid box is divided in a number of patches each having its own LAI and soil 

moisture prognostic variables. With 12 patches, the dimension of the control vector is 

increased, but the number of observations is the same. The filter algorithm is designed to 

provide the analysis for each patch independently by using one observation per grid box. 

Therefore, the model counterpart of the observation is assumed to be the average of the 

corresponding simulated observation for each patch weighted with the fraction occupied by 

each patch. The simulated observation over one patch depends only upon the control vector 

over the same patch. In the SEKF, this approach reduces the number of perturbed runs 

needed to compute the Jacobian matrix. The Kalman gain is computed independently for 

each patch. A new value that represents the analysis is obtained as an optimal combination 

of the observation via the increment and background as in Equations 3.2 and 3.5. 

Finally, the updated value is aggregated from the weighted contribution of each patch over 

the vegetation tile.  

An illustration of the land data assimilation algorithm is shown in Figure 3. 

Figure 4 illustrates an example of the multi-patch data assimilation scheme for a grid cell 

split into three patches. The aggregation and disaggregation arrows correspond to the 

calculation of the model counterparts of a grid-scale observation and to the extraction of the 

data information distributed among the patches. 
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Figure 3: Flow chart of the land data assimilation algorithm 
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Figure 4: The multi-patch data assimilation design for a grid cell split into three patches, 

each having their variables xp . The predicted observations yp are weighted with their fraction 

denoted by αp , where p = 1, 2, 3. y
o
 represents the grid-scale observation. The observation 

operator H aggregates the predicted observations at the grid scale. The data information is 

split among patches via the Kalman gain K. 

 

 

3.1.4.5. State vector and resolution 

The vector of observations includes two elements: SSMsat and LAIsat at each grid cell. 

The control state vector for the analysis consists of two prognostic variables, root-zone soil 

moisture and LAI, each of them containing 12 values that correspond to the twelve 

elementary land cover types (patches). The surface soil moisture does not belong to the 

vector state, but it is a prognostic variable in the ISBA-A-gs LSM. The root-zone soil moisture 

is of great relevance to this study, as it governs the plant response to drought. Moreover, the 

Kalman filter is particularly useful for correcting the system variables with a slow temporal 

evolution such as LAI and WG2. Due to the small capacity of the surface soil water reservoir, 

the SSM is rapidly influenced by the atmospheric forcing and by the capillarity rises from the 

deep reservoir. Therefore, a dedicated initialization of the SSM is less important than that of 

WG2 associated with soil depths up to 2.5 m. Following a recommendation of Draper et al. 

(2009), the SSM prognostic variable was excluded from the control vector in order to reduce 

the number of linearization of the SEKF Jacobian. The modelled SSM is used to calculate 

the innovations and is linked to the control variable WG2 via the prognostic equations of the 
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ISBA scheme. The SSM variable is indirectly corrected through the changes made by the 

assimilation in the deep reservoir. The model simulations without data assimilation (prior) 

start in January 2007. The year 2007 is considered as a spin-up period for the model run in 

order to obtain an equilibrium state. Then, the assimilation experiment starts on 1 January 

2008 and lasts until June 2014. The SEKF assimilates available observations every 24 h at 

09:00 UTC, by analysing the initial state via the information provided by an observation at the 

end of the assimilation window. The SSMsat observations are converted into volumetric 

water content (see Sect. 3.1.4.6) and assumed to be the observation equivalent of the 

SSMmod. Possible mismatch between observed and modeled quantities are accounted for in 

a bias correction scheme described in the next section. Concerning LAI, the satellite-derived 

product is considered to be the observation equivalent of the simulated LAI. The LAIsat is 

assimilated at the provided temporal resolution of 10 days. The LDAS products (LAI, root-

zone soil moisture, water, carbon and energy fluxes) are provided across the France (world) 

domain split into 8602 (87612) grid cells of 0.07° (0.50°) at the temporal resolution of one day 

for the state variables LAI and soil moisture and as cumulated daily outputs for the fluxes. 

Hereafter, the analyzed variables will be referred to as “posterior”, in opposition to the 

modeled variables referred to as “prior”. 

 

3.1.4.6. Rescaling and bias correction 

Prior to assimilation, the SSMsat product has to be transformed into model equivalent 

volumetric SSM. The discrepancies between the model simulations and the satellite 

observations are addressed as part of the data assimilation system. The SSMsat data are 

rescaled by matching its CDF to that of SSMmod. The approach described in Scipal et al. 

(2008) permits correcting for the differences in the first two moments (mean and variance) of 

the distribution and can be viewed as a linear transformation. The two parameters of the 

linear relationship, the intercept a and the slope b vary spatially, but are constant in time: 

a = θ m − b × θo , 

b = σm/σo, 

where θm and θo hold for the means of model and observation, respectively, while σm and σo 

represent the standard deviation errors for model and observations, respectively. Scipal et al. 

(2008) noted that the use of a linear transformation produces the bias free observations (with 

respect to the model) for the entire considered period, but systematic differences related to 

seasonal or inter-annual variations in bias may remain uncorrected. The importance of 

accounting for seasonal corrections in the CDF matching was discussed for the AMSR-E 
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(Advanced Microwave Scanning Radiometer) SSM data and the SSM provided by the NWP 

system ALADIN of Meteo-France by Draper et al. (2009). 

  

 

 

Figure 5: Surface soil moisture evolutions for 2009 at two location in North East (top) and in 

South West (bottom) of France for model (blue), ASCAT CDF rescaled (red) and ASCAT 

seasonal CDF rescaled (green) observations. SWI-001 observations ranging between 0 and 1 

are depicted by black stars. 
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Therefore, we have derived the a and b CDF matching parameters on a seasonal basis by 

using a three-month moving window (De Rosnay et al., 2013) from 2007 to 2014. The two 

CDF matching parameters are calculated on a monthly basis using a three-month moving 

window from 2007 to 2014, for each model grid-cell. Therefore a single set of 12 pairs of 

parameters is obtained for the whole 2007-2014 period. The CDF matching moments are 

computed based on (1) screened observations with the quality flag provided with the SSMsat 

and additional aforementioned masks for altitude and urban fractions, and (2) SSMmod 

values for simulated soil temperature above 0o C. 

In Figure 5 the model simulations are compared with two CDF rescaled ASCAT time 

series (without seasonal corrections and with seasonal corrections) to determine their ability 

to represent the temporal dynamics at two locations in North-East (48.199 N, 1.053 W) and 

in South-West (43.350 N, 1.302 E) of France. For both locations, the CDF matching with 

seasonal correction improves the temporal correlations between the data and the model 

when compared with the approach without seasonal corrections from 0.72 to 0.79 (location in 

the North-East) and from 0.70 to 0.79 (location in the South-West). In addition, the seasonal 

bias correction reduces the standard deviation of the bias by 0.01 m3 m−3 for both locations.  

 

3.1.4.7. Background and observation errors 

The performance of an analysis scheme depends on appropriate statistics for background 

and observation errors. One source of information relies on the statistics of the innovations 

(observations minus background). If the background and observation errors are uncorrelated 

and normal distributed, the variance of the innovations is represented by the sum of 

observation and background variances (Andersson, 2003). 

For simulated root-zone soil moisture, a mean volumetric standard deviation error of 0.02 

m3 m−3 was chosen as suggested by several authors (Mahfouf et al., 2009; Draper et al., 

2011; Barbu et al., 2011). The observational error is set to 0.05 m3 m−3 according to the 

median value of SSMsat ASCAT data error estimates. This value is consistent with errors 

typically expected for remotely sensed soil moisture (de Jeu et al., 2008; Draper et al., 2011). 

Background error is estimated from the innovations (differences between observations 

and background) statistics using the bias corrected ASCAT data. The distribution is 

essentially unbiased (by definition after using a bias correction scheme) with a near-

Gaussian shape. Assuming that these errors are Gaussian and uncorrelated, the variance of 

the distribution is [σ o ]
2 + [σ b ]

2 . Over the whole period, the standard deviation is 0.07 m3 

m−3. Moreover, by assuming that the observation error is equal to SSMmod error 

(considering that neither the ASCAT product nor the model is a better estimate of the true 
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surface soil moisture) each error has a standard deviation of 0.05 m3 m−3. It is important to 

keep in mind that this single value is probably not optimal for all soil moisture ranges 

(probably too high for dry soils and too low for wet soils). Removing the arbitrariness of such 

assumption will be addressed in future studies with a triple collocation approach. 

Similar to Mahfouf et al. (2010) and Dharssi et al. (2011), a background quality control is 

performed in order to reject SSMsat converted to volumetric soil moisture values that are too 

far from the model first-guess. The data are discarded if the innovations are larger than 0.21 

m3 m−3 (i.e. three times the square root of the sum of the observation and background 

variances).  

    Concerning LAI, in a previous study, Barbu et al. (2011) estimated in situ LAI 

observation errors for a grassland in southwestern France. Generally, the start and the end 

of the growing season are considered being better represented by the satellite products 

(Jarlan et al., 2008; Brut et al., 2009; Szczypta et al., 2012). In this version of the algorithm, 

the standard deviation of errors of LAIsat is assumed to be 20% of LAIsat. The same 

assumption is made for the standard deviation of errors of LAImod (20% of LAImod) for 

LAImod values higher than 2 m2 m−2. For LAImod values lower than 2 m2 m−2 a constant 

error of 0.4 m2 m−2 is assumed (option 3 in Barbu et al., 2011). It has been checked that the 

observation and model error specifications are consistent with innovation statistics in a 

similar way as for the soil moisture variable. 

 

3.1.5. Limitations of the method 

The assimilation results depend to a large extent upon the quality of the data to be 

assimilated. The remotely sensed SSM data exhibit a number of non-realistic low values 

associated with large uncertainties over densely vegetated areas (Kidd et al., 2013). This 

may be detrimental to analysis by causing a too-large soil moisture depletion. Nevertheless, 

this effect has been minimized by the seasonal bias removal performed before the 

assimilation. 

A single, thick root-zone soil layer represents the soil hydrology in the model version. 

Such description increases the time to deplete soil moisture causing this slow response to 

dry conditions. Also, the propagation of surface soil moisture information within deeper layers 

may be affected by the lack of vertical resolution of the model. Increasing the number of soil 

layers will allow an explicit representation of a vertical distribution of the root profile in the soil 

and, subsequently, a more realistic vegetation response to water stress. In that respect, a 

multi-layer version of the soil hydrology is expected to improve the overall performance of the 

system. 
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Many studies indicate the presence of systematic biases between the observations and 

the model outputs for soil moisture (Walker et al., 2003; De Lanoy et al., 2007) and LAI 

(Jarlan et al., 2008; Lafont et al., 2012). These biases have multiple origins related to model 

inputs, model physics or data retrieval procedures. Correcting only for the existing bias in 

observations without properly accounting for model uncertainties leads to suboptimal data 

assimilation results. The characterization of errors associated with model dynamics and 

parameters is a rather challenging area for land data assimilation as mentioned by Reichle 

(2008). 

    Errors affecting model simulations may be related to the distribution of bare soil and 

vegetation and may depend on the vegetation type. For example, croplands present more 

heterogeneities than grasslands and many processes of anthropogenic nature are not 

described for crops in the model. Model (background) errors were set to a single value for all 

patches. It is important to keep in mind that this single value is probably not optimal for all 

soil moisture ranges (probably too high for dry soils and too low for wet soils) as well as for 

LAI ranges. However, even under this simple assumption, the assimilation partly 

compensates for the lack of description of managed ecosystems by reducing the duration of 

the crop phenological cycle, which tends to be too long in the model. In the case of highly 

heterogeneous pixels, one has to be aware that this compensation may be not adequately 

distributed among the patches, especially in grid cells covering complex crop rotation 

systems. The choice of model error may be refined by assigning different error statistics to 

different ecosystems and making use of observed LAI at its original resolution of 1 km. 

Assimilating original LAI data may help in decreasing the occurrence of sub-grid 

inconsistencies. 

 

3.2. REGIONAL LDAS ARCHITECTURE 

The LDAS can be used a high resolution (0.07°) at a regional scale (e.g. over France, 

Hungary) and at a lower spatial resolution (0.50°) at a global scale. A low resolution chain 

working at a global scale (LDAS-Monde) is described in Chapter 4. 

The present description of LDAS is based on the offline version of SURFEX v7.3.  

 

3.2.1. SEKF 

The VARASSIM (routine name, not an acronym) source package contains a number of 

specific routines for the assimilation purposes. The main routine performs the various steps 
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of the assimilation system (forecast, data selection and analysis). A bash script that allows 

running the EKF over a period of time drives these routines. It operates in several steps: 

 First, the initial perturbations are created. The initial background error covariance 

matrix is defined and stored in a file. 

 SURFEX runs with the perturbed initial conditions for each of control variables. 

The perturbed evolved prognostic variables and the perturbed simulated 

observations are stored in temporary files. 

 SURFEX runs with the reference initial conditions. The reference evolved 

prognostic variables and the reference simulated observations are stored in 

temporary files. 

 The Jacobian matrix of the forwarded model is computed by using the perturbed 

and reference runs. The error covariance matrix is evolved in time, and stored in a 

file to be used further in the analysis. 

 The assimilation is prepared for by reading the actual observations, the simulated 

(reference and perturbed) observations, computing the Jacobian of observation 

operator and the observation error covariance matrix. 

 The analysis is performed by calculating the innovation vector and the Kalman 

gain and stored in a file ready for the next assimilation cycle. The new analysis 

error covariance matrix is computed and stored in a file for the next cycle. 

 

3.2.2. EnKF 

The EnKF source package is structured in a similar way to the VARASSIM source 

package. The execution of the EnKF consists of three levels: assimilation parameter 

prescription, assimilation temporal/spatial organization, elementary assimilation calculations. 

At the highest level, a python routine specifies the experimental parameters for the EnKF. 

The version of the EnKF is also specified. There are two versions of the EnKF that use a 

different calculation of the analysis: The traditional EnKF (referred to as the EnKF) and the 

Ensemble square root filter (EnSRF). The python script then calls a Bash script, which runs 

the EnKF over a period of time. The Bash script calls the EnKF routines.  

The EnKF operates in several steps: 
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 For the first assimilation window, the ensemble members are initialized by 

perturbing the input variables using white noise. Otherwise, the ensemble 

members are read from the previous analysis.  

 SURFEX runs with each ensemble member. The evolved ensemble members are 

stored in temporary files. 

 The assimilation is prepared for by reading the actual observations, the simulated 

observations for each ensemble member, and the ensemble members for each 

prognostic variable. 

 The analysis is performed for each ensemble member by calculating the 

innovation vector for each ensemble member, and by calculating the Kalman gain. 

Depending on the EnKF version (EnKF or EnSRF), the analysis is calculated 

slightly differently. 

 Red noise is then added to the ensemble perturbations. This is necessary to 

maintain the ensemble spread. 

 The analysis ensemble is stored in a file ready for the next assimilation cycle. 

 

3.2.3. Inputs 

3.2.3.1. Physiographic fields:  

 Land cover map: ECOCLIMAP II included in the SURFEX software. 

 Soil texture: CLAY and SAND fraction from HWSD 

 Orography from GTOPO30 (for pre-processing of the ASCAT remote sensing data by 

using a topographic mask). 

 

3.2.3.2. Meteorological inputs:  

 Over France (LDAS-France), the meteorological inputs used by the model are provided 

by the operational SAFRAN (Système d'Analyse Fournissant des Renseignements 

Atmosphériques à la Neige) meso-scale analysis system at 8-km spatial resolution and 

hourly temporal sampling (Quintana et al., 2008). The SAFRAN data are uploaded monthly 

on the Météo-France archiving system as direct access binary files. The SAFRAN analysis 
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covers 9882 grid points on a domain larger than France. The first step of the processing is to 

select only the grid points located over France (8602 points). In a second step, the 

atmospheric [CO2] concentration is added to the forcing files. It evolves yearly according to 

the IPCC A2 scenario (IPCC, 2001). The SAFRAN data are collected by FTP once per 

month. On the 22 of month N, the data of month N-1 are available. The forcing is split 

according to the length of the assimilation window. In this experiment, there is one forcing file 

per day. 

The SAFRAN files include the following fields (which are used by the model): 

 Surface air temperature and air humidity, 

 Incoming short wave and long wave radiation, 

 Atmospheric pressure, 

 Wind speed, 

 Precipitation. 

 

3.2.4. Baseline processing  

3.2.4.1. Remote sensing observations for the assimilation  

Before being evaluated or assimilated, the remote sensing data should be prepared. 

Pre-processing the remote sensing data: 

 GEOV1 LAI: 

The Copernicus Global Land GEOV1 LAI dataset is collected from the website 

(http://land.copernicus.eu/global) in the HDF5 format. The data are provided at a temporal 

resolution of 10 days. A quality check based on the Quality Flag field was performed. The 

data are kept only if all the quality flags are set to 0. Then the 1-km data are aggregated on 

the model grid cell scale if at least half the surface of the grid cell is covered.  

 ASCAT near-surface soil moisture: 

The ASCAT-derived SWI–001 (T=1day) product is supplied by IPMA from Jan. 2007 to 

present in HDF5 format. 

http://land.copernicus.eu/global
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Before projecting ASCAT data onto the model grid, the observations are screened in order 

to remove the observations with a quality flag QF lower than 40% and only the data flagged 

SSF=0 or SSF=1 are used. After projection, additional masks for urban regions, steep 

mountainous terrain, and frozen instances indicated by the model simulations but not 

detected by ASCAT, are applied. 

Finally, the CDF matching designed to remove the systematic differences between data 

and model simulations is performed. The data set is used to compute the seasonal CDF 

matching parameters as described in Scipal et al., 2008. This technique is improved by 

computing the statistical parameters based on 3-months moving window (the updated CDF 

parameters are applied to the second month of the 3-month period).  

 Observation files: 

All the remote sensing data are gathered in ASCII files. There is one file per assimilation 

window (one day) that contains the two types of observations located around the analysis 

time (end of assimilation window). When an observation is missing at a grid cell or at a given 

time, it is set to 999.0. These daily files integrate all the pre-processing data treatments 

described here.   

 

3.2.4.2. The EKF namelist 

The choice of the control variables, observation types to be assimilated, model and 

observation errors, and size of perturbations is done by setting the corresponding elements 

in the namelist. The control variables are two prognostic variables: LAI and the volumetric 

water content WG2 in the root zone. Two observation types are considered in the 

assimilation: SWI-001 and LAI. 

 

3.2.4.3. Sequence of operations, Data streams, Interfaces 

Step 0: Install LDAS 

a) Install the last version of SURFEX (see the http://www.cnrm.meteo.fr/surfex-

lab/spip.php?article163) 

-     get the latest version from the trunk:  

svn co http://svn.cnrm-game-meteo.fr/projets/surfex/trunk 

http://svn.cnrm-game-meteo.fr/projets/surfex/trunk
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-    compile the master version of the code: in the src directory, run make, and then make 

installmaster. 

Master executables are created in the directory exe. 

b) Download and install de LDAS package (see the SVN branch) 

- choose a name for your own source directory in src, for example 

MYSRC_name_exp. Cp the sources from the VARASSIM directory onto 

$SRC_SURFEX/src/MYSRC_name_exp 

- modify the compiling list in the Makefile.SURFEX: instead of the list used for 

compiling the MASTER version, compile the PGD, PREP, OFFLINE &VARASSIM 

- go to $SRC_SURFEX/src and launch successively export 

VER_USER=MYSRC_name_exp, ./configure, . ../conf/profile_surfex-LXgfortran-

SFX-version_SURFEX-MYSRC-MPIAUTO-DEBUG, make user and make 

installuser. New executable files for MYSRC_name_exp will be created in the exe 

directory. 

 

Step1: Download the remote sensing data 

a) Copernicus Global Land LAI: http://land.copernicus.eu/global 

The data are added on an FTP server : catftp.vgt.vito.be. 

b) Copernicus Global Land SWI : http://land.coperncius.eu/global  

The SWI data can be downloaded from an ftp server. 

The SWI data version 2.0.0 is available from 01/01/2007 to present. 

 

Step 2: Download and pre-processing of the SAFRAN operational analysis  

The SAFRAN forcing is generated in an incremental way. Each month, the data are 

computed between the 1st of August and the 21st of the current month. Once a year (during 

August) the forcing files are recomputed for the whole year.  

 

Step 3: Running the open loop (offline)   
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 Run the model. The output is in BINARY format at a temporal scale of three hours.   

 

 Step 4: Pre-processing of the Copernicus Global Land remote sensing data 

extract and screen the LAI and SWI  data (see section 3.2.1.), 

calibrate (CDF matching) the SWI data using the pre-calculated parameters a and b. 

produce the daily observation ASCII files containing the two columns of data for all 

SAFRAN grid cells (8602 points). 

 

 Step 5: Running the assimilation system 

Run the assimilation. 

 
3.2.5. Output 

The analyzed variables are produced at a temporal scale of three hours. Over a window of 

24h, the three-hour output split the window into 8 values. If the assimilation system starts at 

9UTC, the first output value in the binary file is three hours later at 12UTC. For fluxes the last 

output represents the 24h cumulated values. The specific data assimilation tools 

(increments, Jacobians, gains, innovations) are written in a daily ASCII format.  

The following set of products is considered for the ImagineS project: 

 LAI, FAPAR and soil moisture 

 Total albedo et land surface temperature (LST) 

 Evapo-transpiration, drainage, runoff, and carbon fluxes 

  

3.2.6. Python LDAS chain 

Here we describe the structure of the python LDAS chain code. The chain implements the 

following steps: 

1. Preparation of forcing files. 
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2. Pre-processing of remotely sensed observations. 

3. Post-processing of the analysis outputs. 

The code is available in the zipped archive ldas_chain.zip. 

For each implemented step of the chain (forcing preparation, observations pre-processing, 

and outputs post-processing), the code consists of a main program and a set of functions. 

The main program reads the options, which are defined by the user in a Python script, and 

calls the functions to perform the chain operations. 

The core of the procedure, as well as most pre-processing functions, is variable- and 

domain-independent. Indeed the code has been designed to be extensible for working with 

new: 

 observation variables; 

 model spatial domains; 

 observation screening and rescaling methods; 

 grid interpolation methods. 

The code is written in Python and in Fortran 90. The code makes use of the F2py 

compiler, which allows calling compiled Fortran 90 subroutines using Numpy arrays for 

input/output. 

A diagram of the general code structure is given below: 

 

Figure 6: General code structure of the Python LDAS chain 
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The code is organized in three Python modules, each one implementing a functionality of 

the chain: 

1. prepareForcing.py: retrieval and preparation of the forcing files needed to run the model 

in data assimilation mode. 

2. ldasPre.py: pre-processing of the remotely sensed observations, which are assimilated 

by the model and/or used to evaluate the analysis results in the post-processing. 

3. ldasPost.py: post-processing of the analysis outputs by producing of figures and tables. 

The main operations implemented in the 3 modules are briefly described in the following. 

All modules read and parse user defined options from the same file. 

 Forcing preparation (prepareForcing.py) 

o Retrieve the raw files containing the forcing data. 

o Write the daily NetCDF forcing files needed to run the analysis. 

 Observations pre-processing (ldasPre.py) loop over variables and assimilation 

dates 

o Read observation data and observation flag values.  

o Interpolate observation data onto model grid. 

o Read in model values if rescaling or screening using model output is 

required (currently for SWI only). 

o Screen observations using surface features, e.g. altitude, town fraction 

(currently for SWI only). 

o Perform rescaling (currently for SWI only). 

o Write data files (CANARI and Python formats) 

 Output post-processing (ldasPost.py) 

o Graphical files corresponding to figures and tables are copied to the folder 

<graphics_dir>/copernicus/, where <graphics_dir> is specified by the user 

in the options file. 
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o Files are named according to the pattern 

<type>_<number><index>_<figure_name>, where: <type> describes the 

graphical output type, which can be either 'fig' (for figures) or 'tab' (for 

tables); <number> is the figure number in the Copernicus report; <index> is 

the sub-figure/table index; and <figure_name> follows the definitions given 

in the following Section (2.3.2). 

o  After each figure/table description, its file name pattern is given between 

brackets []. The represented time period is indicated in the file name with 

the strings <start> and <end>, whose format is generally yyyy-mm. For 

each remotely sensed variable <obs>, the following figures and tables are 

produced: 

1. Domain averaged time series [<obs>_series_<start>_to_<end>.pdf]. 

2. Monthly domain averaged time series [<obs>_series_monthly_<start>_to_<end>.pdf]. 

3. Monthly average maps for the current year 

[<obs>_avg_monthly_maps_<start>_to_<end>.png]. 

4. For each score <score> (bias, correlation, RMSD and SDD): 

4.1. Monthly score maps for the current year 

[<obs>_<score>_monthly_maps_<start>_to_<end>.png]. 

4.2. Annual score maps [<obs>_<score>_annual_maps_<start>_to_<end>.png]. 

5. Seasonal cycle of scores computed over the whole domain, comparing the current year 

with the previous period [<obs>_seasonal_scores_<start>_to_<end>.pdf]. The number of 

observations are printed in an auxiliary table 

[<obs>_table_num_obs_seasonal_scores_<start>_to_<end>.pdf].  

6. Annual scores time series computed over the whole domain 

[<obs>_annual_scores_<start>_to_<end>.pdf].  The number of observations are printed in 

an auxiliary table [<obs>_table_num_obs_annual_scores_<start>_to_<end>.pdf]. 

7. Table of scores computed over the whole domain, comparing the current year with the 

previous period [<obs>_table_scores_periods_<start>_to_<end>.pdf]. 

8. Table of annual scores computed over the whole domain 

[<obs>_table_scores_annual_<start>_to_<end>.pdf]. 
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Moreover, the following figures are produced: 

a. For each unobserved model output variable <var> in extra_out_names: domain-

average time series plot [<var>_series_<start>_to_<end>.pdf]. 

b. For each observation variable that is rescaled: raw vs rescaled domain-average 

monthly time series plot [<obs>_rescaled_vs_raw_<start>_to_<end>.pdf]. 

c. 3-hourly land surface temperature (LST) bias plots by month <month> 

[LST_hourly_bias_<month>_<start>_to_<end>.pdf]. 

d. Monthly maps of the differences analysis minus openloop (<var> = 'EVAPC_P' and 

'DRAINC_P') or of the analysis increments (<var> = 'LAI' and 'WG2'), comparing the current 

year with the previous period 

[<var>_analysis_increment_monthly_maps_<start>_to_<end>.png] or 

[<var>_analysis_minus_model_monthly_maps_<start>_to_<end>.png]. 

 

3.2.7. Hydro-validation over France 

The MODCOU hydrological model (Habets et al., 2008) is used over France to validate 

the changes in the land surface state triggered by the assimilation. 

MODCOU computes the spatial and temporal evolution of the piezometric level of 

multilayer aquifers, as well as the exchanges between aquifers and rivers, before routing the 

surface water through the river network. River flows are calculated every 3 hours, while the 

evolution of the aquifers is computed daily. 

Various configurations of the ISBA LSM can be coupled to MODCOU: 

 ISBA-A-gs without dynamic evolution of LAI. The annual cycle of LAI is provided by 

ECOCLIMAP-II as a fixed satellite-derived climatology. This simulation is referred to 

as "AST" (A-gs and the enhanced soil moisture stress option). 

 ISBA-A-gs may simulate daily LAI values. This simulation is referred to as "NIT" (with 

a nitrogen dilution-based representation of leaf biomass, in addition to the AST 

capability.) 

ISBA-A-gs NIT version may incorporate the data assimilation scheme in conjunction to 

MODCOU. Two simulations referred to as "LDAS" are provided: 

 LDAS1 meaning data assimilation of satellite LAI data only 
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 LDAS2 meaning data assimilation of both LAI and ASCAT SWI. 

The drainage and runoff fluxes generated for each experiment (NIT, AST, LDAS1 and 

LDAS2) are routed through the surface river network using the MODCOU model. 

Comparisons with observed river flow can be performed on a daily or monthly basis at the 

river gauges located closest to the outlet of the four largest rivers of France (Loire, Seine, 

Garonne and Rhone). Different statistical scores (bias, correlation coefficient, rmse, Nash 

score) are calculated. 

The MODCOU chain code implements the following steps: 

1. Preparation of forcing files consisting of drainage and runoff fluxes provided by the 

model simulations. 

2. Compiling and Running of MODCOU model. 

3. Calculate the discharges and their statistical scores. 

The code is available at /cnrm/vegeo/barbu/MODCOU/. There are three subdirectories: 

modcou_src, modcou_forcing and modcou_results. 

The modcou _src directory contains several subdirectories. The first one src_init contains 

the MODCOU sources. The code consists of a main program (hydro_only_jour.F90) and a 

set of Fortran routines to be compiled. The second directory in the modcou_src called 

run_init contains the main program (bash script). This program consists of three parts : 

 Reading the forcing files and the initial state of the model 

 Running the main hydro_only_jour executable 

 Collecting output and calculating discharges and statistics using the discharge 

data. 

Several input files (HYDRO_PARAM_*, coord_france, mask, number of days) used for 

running the modcou executable are located in the same directory.  

The third subdirectory (ana_init) contains the main fortran routine lec_debits_v3.f90 that 

need to be compiled, an option list (OPTIONS_DEBITS.nam) and a list of data stations 

(STATIONS_ALL). 
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3.2.8. Summary of the Regional LDAS-France characteristics 

 

Inputs Meteorological forcing: SAFRAN 

Physiographic field (from ECOCLIMAP II, SIM) 

Copernicus Global Land GEOV1 LAI product.  

Copernicus Global Land ASCAT SWI-001 surface soil moisture. 

Outputs Analyzed LAI, Root-zone soil moisture (WG2), NEE, GPP, Evapo-
transpiration 

Interfaces Copernicus Global Land service (http://land.copernicus.eu/global) 

Météo-France operational SAFRAN production. 

Capacity 
requirements 

1 dedicated desktop computer.  

About 50 Go per year (including output products, inputs and auxiliary 
variables) 

Table 3: Summary of SURFEX regional LDAS characteristics 

 

 

3.2.9.  Regional LDAS in Hungary 

The Hungarian LDAS contains many similarities and differences with the French LDAS. In 

Hungary the applied LDAS is also based on the off-line SURFEX v7_3 model. ISBA-A-gs 

force-restore three-layer soil model is used in both kinds of experiments (with and without 

assimilation).  

In LDAS-Hungary to analyze the leaf are index (LAI) and the root-zone soil moisture 

(WG2), we assimilate LAI and ASCAT Soil Water Index (SWI) satellite observations provided 

by the Copernicus Global Land service (http://land.copernicus.eu/global) (Section 3.1.3). 

Before assimilation, pre-processing of the data is needed. For LAI the same quality check is 

applied as in France, which is based on the Quality Flag field of the product (Section 3.2.4.1). 

For SWI, very simple checking option is built in, namely only the missing values are removed 

from the database. To determine surface soil moisture content from SWI observation we use 

the following relationship: SSM=SWI*(wmax-wmin)+ wmin, where wmax and wmin are the 

maximal and minimal SSM values that the model can take at a given grid point. These values 

are determined from a longer (several years) simulation. The derived SSM data are bias 

corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative 

http://land.copernicus.eu/global
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Distribution Function) matching technique described in Scipal et al. (2008). In Figure 7, the 

model simulation is compared with the raw ASCAT and the CDF rescaled ASCAT time series 

at Hegyhatsal (located at western part of Hungary). The CDF matching with seasonal 

correction improves the temporal correlations between the data and the model.  

 

 

Figure 7: Surface soil moisture evolutions for 2008 at Hegyhatsal (West-Hungary) for model 

(red), raw ASCAT satellite observations (purple) and ASCAT seasonal CDF rescaled (blue) 

observations.  

 

The VARASSIM source code originates from Meteo-France which uses EKF method with 

similar settings as in France: the observation error of LAI is set to 0.5 m2/m2, the model error 

is 0.2 m2/m2; for WG2, the observation error is 0.04 m3/m3, and the model error equals 0.2 

m3/m3. 

The applied domain covers Hungary, the resolution of the model is 8x8 km, so the number 

of grid points is 2698. In SURFEX, each surface grid point is separated into 12 different 

patches according to the vegetation or surface type. The model calculates the prognostic 

equations and surface fluxes independently for the different patches.  

The input soil and vegetation parameters are derived from ECOCLIMAP II (Faroux et al., 

2013). The meteorological inputs are coming from the ALADIN cy36t1 numerical weather 

prediction (NWP) model forecasts (2 m temperature, pressure, wind speed and rainfall), and 

LandSAF incoming short and long wave radiation observations are used. The reason for this 

choice is that radiation influences to a great extent the photosynthesis and the NWP model's 

fields are not as accurate. Since the forcing fields are available only with 1 hour temporal 

frequency, but the time step in SURFEX is 5 minutes, the forcing fields are interpolated at the 

missing time steps. 
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The model is running in cycling mode which means that one run produces 24 hour 

forecast (from 6 UTC to the next day 6 UTC) and the next run is started on the next day. The 

outputs are generated with 6 hours frequency. The products which are evaluated in the 

frame of ImagineS are: LAI, WG2, NEE, GPP and Evapotranspiration. The outputs are 

stored in netcdf format. 

 

 

3.3. CONCLUSIONS AND PROSPECTS 

The France domain encompasses a wide variety of soil and vegetation ecosystems. At 8 

km pixel scale, there is a high degree of heterogeneity that should be taken into account. 

Each grid cell is represented as a mosaic of 12 land covers or patches. The ISBA-A-gs LSM 

provides a detailed computation of the surface fluxes of energy, water and carbon at the sub-

grid (patch) level and allows aggregating the information from different ecosystem types. 

Following this approach, a regional land data assimilation system was designed to produce 

the updated variables for each land cover by using one grid-scale observation. Taking into 

account the grid heterogeneity is central to this methodology and represented the main 

justification for including vegetation patches in the model and in the assimilation scheme.  

The regional LDAS system is being extended at a global scale (LDAS-Monde, see below). 

The assimilation of FAPAR is being tested, together with alternative assimilation techniques 

(e.g. EnKF). 

Next development steps will be to evaluated (1) the assimilation of new satellite products 

(surface albedo, land surface temperature, ...), (2) the use of new capabilities of the SURFEX 

modeling platform (e.g. multilayer soil model). 
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4. SURFEX LDAS-MONDE 

Barbu et al. (2014) have implemented the LDAS over France (LDAS-France). Since 

SURFEX is designed to work at a global scale, the LDAS chain can be extended to larger 

scale domains (Mediterranean, European or global scale). The ISBA-A–gs model has been 

already used in several applications at large scale domain at resolutions provided by 

atmospheric forcing fields such as ERA-Interim. For example, Szczypta et al. (2012) used 

the ERA-Interim atmospheric reanalysis in a study over Europe to drive the ISBA model at a 

spatial resolution of 0.5°, corresponding to 8142 land grid cells over the considered area.  

Therefore application of data assimilation to larger domains is envisaged in the future 

using the same LDAS configuration as described in this document. 

Specific characteristics of LDAS-Monde are related to the atmospheric variables, given by 

ERA-Interim (Table 4). ERA-Interim products on the MARS archiving system of ECMWF are 

normally updated once per month, allowing a two-month delay for quality assurance. 

 

Inputs Meteorological forcing: ERA-Interim 

Physiographic field (from ECOCLIMAP II, HSWD) 

Copernicus Global Land GEOV1 LAI product.  

Copernicus Global Land ASCAT SWI-001 surface soil moisture. 

Outputs Analyzed LAI, Root-zone soil moisture (WG2), NEE, GPP, Evapo-
transpiration 

Interfaces Copernicus Global Land service (http://land.copernicus.eu/global) 

ECMWF operational ERA-Interim production (MARS). 

Capacity 
requirements 

Supercomputer.  

About 500 Go per year (including output products, inputs and auxiliary 
variables). 

Table 4: Summary of LDAS-Monde characteristics 
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